skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sundaram, Ranjani G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As quantum computing continues to scale, the ability to execute quantum circuits across distributed quantum networks is becoming increasingly important. While prior work has largely focused on distributing a single circuit to optimize the number of entanglement pairs (EPs) used or the execution time, future applications will require the efficient scheduling and execution of multiple circuits on a shared quantum network. Therefore, we study the problem of efficiently distributing multiple quantum circuits across a shared quantum network under decoherence and network constraints and seek to minimize the execution time required to execute all circuits (makespan). Solving the above problem involves jointly determining when and where each circuit should be executed, and how to schedule concurrent EP generation required to execute remote gates. We propose several algorithmic approaches for this multi-circuit distribution problem and provide theoretical performance guarantees for special cases. To assess the practical effectiveness of our methods, we conduct extensive simulations using the NetSquid quantum network simulator. 
    more » « less
    Free, publicly-accessible full text available September 10, 2026
  2. Free, publicly-accessible full text available March 31, 2026
  3. Free, publicly-accessible full text available March 31, 2026